KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4654. In a triangle \(\displaystyle ABC\), let \(\displaystyle AD\) be an altitude, let \(\displaystyle BE\) be an angle bisector, and let \(\displaystyle CF\) be a median. Prove that the lines \(\displaystyle AD\), \(\displaystyle BE\) and \(\displaystyle CF\) are concurrent exactly if \(\displaystyle ED\) is parallel to \(\displaystyle AB\).

(4 points)

Deadline expired on 10 November 2014.


Statistics on problem B. 4654.
161 students sent a solution.
4 points:77 students.
3 points:30 students.
2 points:37 students.
1 point:14 students.
0 point:3 students.


  • Problems in Mathematics of KöMaL, October 2014

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley