Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?
I want the old design back!!! :-)

Problem B. 4677. (December 2014)

B. 4677. Prove that if opposite edges of a tetrahedron \(\displaystyle ABCD\) are equal in length then the foot of the altitude drawn from \(\displaystyle D\) lies on the Euler line of triangle \(\displaystyle ABC\).

Suggested by Cs. Szabó, Budapest

(6 pont)

Deadline expired on January 12, 2015.


Statistics:

35 students sent a solution.
6 points:Andi Gabriel Brojbeanu, Andó Angelika, Baran Zsuzsanna, Bereczki Zoltán, Cseh Kristóf, Csépai András, Döbröntei Dávid Bence, Fekete Panna, Gál Boglárka, Gáspár Attila, Gyulai-Nagy Szuzina, Katona Dániel, Kovács 101 Dávid Péter, Kovács Péter Tamás, Lajkó Kálmán, Mócsy Miklós, Molnár-Sáska Zoltán, Nagy-György Pál, Porupsánszki István, Schrettner Bálint, Schwarcz Tamás, Szebellédi Márton, Szécsényi Nándor, Széles Katalin, Tóth Viktor, Vághy Mihály, Varga-Umbrich Eszter, Várkonyi Dorka, Wei Cong Wu, Williams Kada.
5 points:Keresztfalvi Bálint, Khayouti Sára.
4 points:2 students.
2 points:1 student.

Problems in Mathematics of KöMaL, December 2014