KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4693. \(\displaystyle K\) is a point on side \(\displaystyle AC\) of triangle \(\displaystyle ABC\) such that \(\displaystyle AK=2KC\) and \(\displaystyle \angle ABK = 2 \angle KBC\). Let \(\displaystyle F\) denote the midpoint of side \(\displaystyle AC\), and let \(\displaystyle L\) be the orthogonal projection of point \(\displaystyle A\) onto the line segment \(\displaystyle BK\). Prove that the lines \(\displaystyle FL\) and \(\displaystyle BC\) are perpendicular.

(5 points)

Deadline expired on 10 March 2015.


Statistics on problem B. 4693.
34 students sent a solution.
5 points:Andi Gabriel Brojbeanu, Baran Zsuzsanna, Cseh Kristóf, Csépai András, Czirkos Angéla, Eper Miklós, Fekete Panna, Gáspár Attila, Geng Máté, Gyulai-Nagy Szuzina, Kerekes Anna, Keresztfalvi Bálint, Kocsis Júlia, Kovács 101 Dávid Péter, Leitereg Miklós, Mócsy Miklós, Nagy Kartal, Nagy-György Pál, Németh 123 Balázs, Polgár Márton, Porupsánszki István, Sal Kristóf, Schrettner Bálint, Schwarcz Tamás, Szebellédi Márton, Vághy Mihály, Varga-Umbrich Eszter, Várkonyi Dorka, Vu Mai Phuong, Wiandt Péter, Williams Kada.
2 points:3 students.


  • Problems in Mathematics of KöMaL, February 2015

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley