KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 4710. (April 2015)

B. 4710. \(\displaystyle \mathcal P\) is a set of points in the plane such that every disc of unit radius has at least one point of \(\displaystyle \mathcal P\) in its interior. Is it true that there exists a closed disc of unit radius that contains at least three points of \(\displaystyle \mathcal P\)?

(4 pont)

Deadline expired on May 11, 2015.


Statistics:

45 students sent a solution.
4 points:Alexy Marcell, Baran Zsuzsanna, Bereczki Zoltán, Bursics Balázs, Csépai András, Czirkos Angéla, Döbröntei Dávid Bence, Fekete Panna, Gál Boglárka, Glasznova Maja, Gyulai-Nagy Szuzina, Hansel Soma, Imolay András, Katona Dániel, Kerekes Anna, Keresztfalvi Bálint, Kocsis Júlia, Kőrösi Ákos, Kuchár Zsolt, Lajkó Kálmán, Leitereg Miklós, Molnár-Sáska Zoltán, Nagy Kartal, Nagy-György Pál, Nagy-György Zoltán, Németh 123 Balázs, Polgár Márton, Porupsánszki István, Sal Kristóf, Schrettner Bálint, Schwarcz Tamás, Siemelink Johanna, Somogyi Pál, Szakács Lili Kata, Szakály Marcell, Szebellédi Márton, Tóth Viktor, Vágó Ákos, Váli Benedek, Várkonyi Dorka, Wiandt Péter, Williams Kada, Zolomy Kristóf.
3 points:Simon Dániel Gábor.
0 point:1 student.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley