Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?
I want the old design back!!! :-)

Problem B. 4710. (April 2015)

B. 4710. \(\displaystyle \mathcal P\) is a set of points in the plane such that every disc of unit radius has at least one point of \(\displaystyle \mathcal P\) in its interior. Is it true that there exists a closed disc of unit radius that contains at least three points of \(\displaystyle \mathcal P\)?

(4 pont)

Deadline expired on May 11, 2015.


Statistics:

45 students sent a solution.
4 points:Alexy Marcell, Baran Zsuzsanna, Bereczki Zoltán, Bursics Balázs, Csépai András, Czirkos Angéla, Döbröntei Dávid Bence, Fekete Panna, Gál Boglárka, Glasznova Maja, Gyulai-Nagy Szuzina, Hansel Soma, Imolay András, Katona Dániel, Kerekes Anna, Keresztfalvi Bálint, Kocsis Júlia, Kőrösi Ákos, Kuchár Zsolt, Lajkó Kálmán, Leitereg Miklós, Molnár-Sáska Zoltán, Nagy Kartal, Nagy-György Pál, Nagy-György Zoltán, Németh 123 Balázs, Polgár Márton, Porupsánszki István, Sal Kristóf, Schrettner Bálint, Schwarcz Tamás, Siemelink Johanna, Somogyi Pál, Szakács Lili Kata, Szakály Marcell, Szebellédi Márton, Tóth Viktor, Vágó Ákos, Váli Benedek, Várkonyi Dorka, Wiandt Péter, Williams Kada, Zolomy Kristóf.
3 points:Simon Dániel Gábor.
0 point:1 student.

Problems in Mathematics of KöMaL, April 2015