KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4713. A circle passing through vertices \(\displaystyle B\) and \(\displaystyle C\) of triangle \(\displaystyle ABC\) intersects side \(\displaystyle AB\) at \(\displaystyle D\), and side \(\displaystyle AC\) at \(\displaystyle E\). The intersection of lines \(\displaystyle CD\) and \(\displaystyle BE\) is \(\displaystyle O\). Let \(\displaystyle M\) denote the centre of the inscribed circle of triangle \(\displaystyle ADE\), and let \(\displaystyle N\) denote the centre of the inscribed circle of triangle \(\displaystyle ODE\). Prove that line \(\displaystyle MN\) bisects the smaller arc \(\displaystyle DE\).

(6 points)

Deadline expired on 11 May 2015.


Statistics on problem B. 4713.
4 students sent a solution.
6 points:Csépai András.
5 points:Fekete Panna, Nagy-György Pál, Williams Kada.


  • Problems in Mathematics of KöMaL, April 2015

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley