KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4731. Let \(\displaystyle 0\le a,b,c \le 2\), and \(\displaystyle a+b+c=3\). Determine the largest and smallest values of

\(\displaystyle \sqrt{a(b+1)} + \sqrt{b(c+1)} + \sqrt{c(a+1)}. \)

Proposed by K. Williams, Szeged

(6 points)

Deadline expired on 12 October 2015.


Statistics on problem B. 4731.
57 students sent a solution.
6 points:Borbényi Márton, Bukva Balázs, Gáspár Attila, Simon Dániel Gábor, Tóth Viktor, Váli Benedek.
5 points:Andó Angelika, Baglyas Márton, Baran Zsuzsanna, Nagy Dávid Paszkál, Páli Petra, Polgár Márton.
4 points:11 students.
3 points:17 students.
2 points:4 students.
1 point:9 students.
0 point:4 students.


  • Problems in Mathematics of KöMaL, September 2015

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley