KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 4737. (October 2015)

B. 4737. \(\displaystyle D\) is the foot of the altitude drawn to the hypotenuse \(\displaystyle AB\) of a right-angled triangle \(\displaystyle ABC\). The angles bisectors of \(\displaystyle \angle ACD\) and \(\displaystyle \angle BCD\) intersect hypotenuse \(\displaystyle AB\) at \(\displaystyle E\) and \(\displaystyle F\), respectively. Determine the ratio of the inradius of triangle \(\displaystyle ABC\) to the circmradius of triangle \(\displaystyle CEF\).

Proposed by B. Bíró, Eger

(5 pont)

Deadline expired on November 10, 2015.


Statistics:

114 students sent a solution.
5 points:79 students.
4 points:15 students.
3 points:6 students.
2 points:6 students.
1 point:2 students.
0 point:1 student.
Unfair, not evaluated:3 solutions.
Unfair, not evaluated:2 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley