KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4778. Let \(\displaystyle D\) denote an interior point of an acute-angled triangle \(\displaystyle ABC\). Construct the circles of diameters \(\displaystyle AD\), \(\displaystyle BD\) and \(\displaystyle CD\), and draw a tangent from each of the points \(\displaystyle A\), \(\displaystyle B\) and \(\displaystyle C\) to each of the two circles not passing through it. Prove that the sum of the squares of the six tangents equals the sum of the squares of the sides of the triangle.

(3 points)

Deadline expired on 11 April 2016.


Statistics on problem B. 4778.
99 students sent a solution.
3 points:89 students.
2 points:9 students.
0 point:1 student.


  • Problems in Mathematics of KöMaL, March 2016

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley