KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 4778. (March 2016)

B. 4778. Let \(\displaystyle D\) denote an interior point of an acute-angled triangle \(\displaystyle ABC\). Construct the circles of diameters \(\displaystyle AD\), \(\displaystyle BD\) and \(\displaystyle CD\), and draw a tangent from each of the points \(\displaystyle A\), \(\displaystyle B\) and \(\displaystyle C\) to each of the two circles not passing through it. Prove that the sum of the squares of the six tangents equals the sum of the squares of the sides of the triangle.

(3 pont)

Deadline expired on April 11, 2016.


Statistics:

99 students sent a solution.
3 points:89 students.
2 points:9 students.
0 point:1 student.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley