KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4797. In triangle \(\displaystyle ABC\), \(\displaystyle D\), \(\displaystyle E\) and \(\displaystyle F\) are arbitrary interior points of sides \(\displaystyle AB, BC\) and \(\displaystyle CA\), respectively. Let \(\displaystyle G\), \(\displaystyle H\) and \(\displaystyle I\) denote the centroids of triangles \(\displaystyle ADF\), \(\displaystyle BED\) and \(\displaystyle CFE\), respectively. Furthermore, let \(\displaystyle S\), \(\displaystyle K\), \(\displaystyle L\) be the centroids of triangles \(\displaystyle ABC\), \(\displaystyle DEF\) and \(\displaystyle GHI\), respectively. Prove that the points \(\displaystyle K\), \(\displaystyle L\) and \(\displaystyle S\) are collinear.

Proposed by Sz. Miklós, Herceghalom

(3 points)

Deadline expired on 10 June 2016.


Statistics on problem B. 4797.
71 students sent a solution.
3 points:62 students.
2 points:5 students.
1 point:1 student.
0 point:3 students.


  • Problems in Mathematics of KöMaL, May 2016

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley