KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 4797. (May 2016)

B. 4797. In triangle \(\displaystyle ABC\), \(\displaystyle D\), \(\displaystyle E\) and \(\displaystyle F\) are arbitrary interior points of sides \(\displaystyle AB, BC\) and \(\displaystyle CA\), respectively. Let \(\displaystyle G\), \(\displaystyle H\) and \(\displaystyle I\) denote the centroids of triangles \(\displaystyle ADF\), \(\displaystyle BED\) and \(\displaystyle CFE\), respectively. Furthermore, let \(\displaystyle S\), \(\displaystyle K\), \(\displaystyle L\) be the centroids of triangles \(\displaystyle ABC\), \(\displaystyle DEF\) and \(\displaystyle GHI\), respectively. Prove that the points \(\displaystyle K\), \(\displaystyle L\) and \(\displaystyle S\) are collinear.

Proposed by Sz. Miklós, Herceghalom

(3 pont)

Deadline expired on 10 June 2016.


Statistics:

71 students sent a solution.
3 points:62 students.
2 points:5 students.
1 point:1 student.
0 point:3 students.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley