KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem B. 4798. (May 2016)

B. 4798. In a cyclic quadrilateral \(\displaystyle ABCD\), diagonals \(\displaystyle AC\) and \(\displaystyle BD\) are perpendicular, and the centre of the circumscribed circle is \(\displaystyle K\). Prove that the areas of triangles \(\displaystyle ABK\) and \(\displaystyle CDK\) are equal.

(4 pont)

Deadline expired on June 10, 2016.


Statistics:

104 students sent a solution.
4 points:101 students.
3 points:1 student.
2 points:1 student.
0 point:1 student.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley