KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4819. Prove that if \(\displaystyle 0<x<\frac{\pi}{2}\), then

\(\displaystyle {(\tg x)}^{\sin x}+ {(\ctg x)}^{\cos x}\ge 2. \)

For what values of \(\displaystyle x\) does the equality hold?

(Kvant)

(5 points)

Deadline expired on 10 November 2016.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Ha \(\displaystyle 0<x<\pi/4\), akkor \(\displaystyle \sin x<\frac{\sqrt{2}}{2}<\cos x\) és \(\displaystyle \tg x<1<\ctg x\), ezért

\(\displaystyle (\tg x)^{\sin x}+(\ctg x)^{\cos x}>(\tg x)^{\sqrt{2}/2}+(\ctg x)^{\sqrt{2}/2}\geq 2,\)

ahol az első egyenlőtlenség az exponenciális függvény monotonitása, a második pedig a számtani és mértani közepek közti egyenlőtlenség alapján teljesül. Ha \(\displaystyle \pi/4<x<\pi/2\), akkor \(\displaystyle \sin x>\frac{\sqrt{2}}{2}>\cos x\) és \(\displaystyle \tg x>1>\ctg x\), amiből az előzőekhez teljesen hasonlóan következik, hogy \(\displaystyle (\tg x)^{\sin x}+(\ctg x)^{\cos x}> 2\). Végül, ha \(\displaystyle x=\pi/4\), akkor \(\displaystyle \tg x=\ctg x=1\), és így \(\displaystyle (\tg x)^{\sin x}+(\ctg x)^{\cos x}= 2\). Ezzel az egyenlőtlenséget igazoltuk, és azt is megmutattuk, hogy pontosan \(\displaystyle x=\pi/4\) esetén teljesül egyenlőség.


Statistics on problem B. 4819.
113 students sent a solution.
5 points:90 students.
4 points:10 students.
3 points:4 students.
2 points:2 students.
1 point:2 students.
0 point:5 students.


  • Problems in Mathematics of KöMaL, October 2016

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley