KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4825. Problem B. 4825. was already proposed earlier this spring, therefore we replace it with a new problem to be submitted together with the problems in this December issue. We apologize for any inconvenience.

Let us consider the concave hexagon in the figure: the points \(\displaystyle ABCD\) form a unit square, and the triangle \(\displaystyle AEF\) is isosceles, with base length equal to two and one angle equal to \(\displaystyle 135^{\circ}\). By using a single slice, cut the hexagon into two equal pieces. Demonstrate the correctness of your solution.

(4 points)

Deadline expired on 10 January 2017.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldásvázlat. Az \(\displaystyle ABC\) derékszögű töröttvonalat forgassuk el \(\displaystyle C\) körül \(\displaystyle 90^{\circ}\)-kal az óramutató járásával megegyező irányban, így épp a \(\displaystyle CDE\) töröttvonalba kerül. Ez adja az ötletet, hogy próbálkozzunk a \(\displaystyle 45^{\circ}\)-os forgatottja mentén vágni. Csak azt kell meggondolni, hogy az \(\displaystyle A\) pont \(\displaystyle 45^{\circ}\)-kal elforgatott képe éppen \(\displaystyle F\), onnan a bizonyítás triviális.

Megjegyzés. Sokan elkövették azt a hibát, hogy nem bizonyították a felbontáskor kapott két ötszög egybevágóságának pontos feltételét. Sokan csak azt látták be, hogy a megfelelő szögek megegyeznek, és hogy egy oldalpár azonos hosszú – arra hivatkozva, hogy a szögek egyezősége miatt az alakzatok hasonlóak, és az azonos oldal miatt egybevágóak is. Ez az állítás háromszögeknél igaz, de nagyobb oldalszámú síkidomokra nem. (Könnyen látható, hogy például a téglalapokra nem igaz).


Statistics on problem B. 4825.
87 students sent a solution.
4 points:56 students.
3 points:22 students.
2 points:5 students.
0 point:2 students.
Unfair, not evaluated:2 solutions.


  • Problems in Mathematics of KöMaL, December 2016

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley