KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4858. Points \(\displaystyle A\) and \(\displaystyle B\) are separated by a unit distance. The unit circles \(\displaystyle k_A\) and \(\displaystyle k_B\) centred at \(\displaystyle A\) and \(\displaystyle B\) intersect at points \(\displaystyle C\) and \(\displaystyle D\), respectively. Let \(\displaystyle k_C\) denote the circle centred at \(\displaystyle C\) and passing through \(\displaystyle D\). \(\displaystyle F\) is that intersection of line \(\displaystyle AC\) and circle \(\displaystyle k_C\) which is farther away from \(\displaystyle A\). \(\displaystyle G\) is the other intersection of circle \(\displaystyle k_A\) and line \(\displaystyle DF\). Show that \(\displaystyle \angle GAD=90^\circ\).

(3 points)

Deadline expired on 10 April 2017.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Használjuk az ábra jelöléseit. Mivel \(\displaystyle ABC\) és \(\displaystyle ADB\) egyenlő oldalúak, ezért az \(\displaystyle ACD\) egyenlőszárú háromszögben \(\displaystyle A\angle=120^\circ\) és \(\displaystyle C\angle=D\angle=30^\circ\). Így a \(\displaystyle CFD\) egyenlőszárú háromszögben \(\displaystyle C\angle=150^{\circ}\) és \(\displaystyle D\angle=15^\circ\). A \(\displaystyle k_A\) kör \(\displaystyle CG\) íven nyugvó kerületi szögei \(\displaystyle GDC\angle=CEG\angle=15^\circ\), s így \(\displaystyle GAE\) egyenlőszárú háromszögben \(\displaystyle A\angle=150^\circ\). Mivel a \(\displaystyle DAE\triangle\) szabályos, \(\displaystyle GAD\angle=GAE\angle-DAE\angle=150^\circ-60^\circ=90^\circ\), ahogy állítottuk.


Statistics on problem B. 4858.
105 students sent a solution.
3 points:98 students.
2 points:6 students.
0 point:1 student.


  • Problems in Mathematics of KöMaL, March 2017

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley