KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4859. Rudi chose a positive integer \(\displaystyle k\), and observed that \(\displaystyle 4^k\) and \(\displaystyle 5^k\) began with the same digit in decimal notation. Prove that this digit may only be a \(\displaystyle 2\) or a \(\displaystyle 4\).

(German problem)

(4 points)

Deadline expired on 10 April 2017.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Tegyük fel, hogy \(\displaystyle 4^k\) és \(\displaystyle 5^k\) is az \(\displaystyle a\in\{1,2,\dots,9\}\) számjeggyel kezdődik. Ekkor \(\displaystyle k\geq 2\), és alkalmas \(\displaystyle s,t\) pozitív egészekkel teljesülnek a következő egyenlőtlenségek:

\(\displaystyle a\cdot 10^s< 4^k<(a+1)\cdot 10^s, \)\(\displaystyle {(1)}\)
\(\displaystyle a\cdot 10^t< 5^k<(a+1)\cdot 10^t. \)\(\displaystyle {(2)}\)

(Azért szigorú az összes egyenlőtlenség, mert 10-nek pozitív egész kitevős hatványa nem lehet sem 4-hatvány, sem 5-hatvány.)

Az (1) egyenlőtlenséget a (2) négyzetével szorozva, majd \(\displaystyle 10^{s+2t}\)-vel osztva:

\(\displaystyle a^3< 10^{2k-s-2t}<(a+1)^3,\)

ami azt jelenti, hogy az \(\displaystyle (a^3,(a+1)^3)\) intervallumba esik 10-hatvány. Mivel \(\displaystyle 1^3=1\), \(\displaystyle 2^3=8\), \(\displaystyle 3^3=27\), \(\displaystyle 4^3=64\), \(\displaystyle 5^3=125\), \(\displaystyle 6^3=216\), \(\displaystyle 7^3=343\), \(\displaystyle 8^3=512\), \(\displaystyle 9^3=729\), \(\displaystyle 10^3=1000\), ezért \(\displaystyle a\) értéke valóban csak 2 vagy 4 lehet.

Megjegyzés. \(\displaystyle 4^{11}\) és \(\displaystyle 5^{11}\) egyaránt 4-gyel, \(\displaystyle 4^{52}\) és \(\displaystyle 5^{52}\) egyaránt 2-vel kezdődik.


Statistics on problem B. 4859.
31 students sent a solution.
4 points:Borbényi Márton, Csiszár Zoltán, Csuha Boglárka, Deák Bence, Döbröntei Dávid Bence, Dömsödi Bálint, Gáspár Attila, Győrffy Ágoston, Imolay András, Jánosik Áron, Kerekes Anna, Kovács 246 Benedek, Lakatos Ádám, Nyitrai Boglárka, Póta Balázs, Saár Patrik, Vári-Kakas Andor, Várkonyi Dorka, Weisz Máté, Zólomy Kristóf, Zsigri Bálint.
3 points:György Levente, Lajkó Áron, Szabó Kristóf, Török Tímea, Török Zsombor Áron.
2 points:3 students.
1 point:1 student.
0 point:1 student.


  • Problems in Mathematics of KöMaL, March 2017

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley