KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4868. In a triangle \(\displaystyle ABC\), \(\displaystyle AC<AB\) and the median \(\displaystyle AF\) divides the angle at \(\displaystyle A\) in a \(\displaystyle 1:2\) ratio. The perpendicular drawn to \(\displaystyle AB\) at \(\displaystyle B\) intersects line \(\displaystyle AF\) at \(\displaystyle D\). Show that \(\displaystyle AD=2AC\).

(3 points)

Deadline expired on 10 May 2017.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldásvázlat. Legyen \(\displaystyle A\) tükörképe \(\displaystyle F\)-re \(\displaystyle A'\), \(\displaystyle AD\) felezéspontja \(\displaystyle T\), \(\displaystyle FAB\angle=\mu\), s így \(\displaystyle FAC\angle=2\mu\). Mivel \(\displaystyle T\) a \(\displaystyle BDA\) derékszögű háromszög Thalész-körének középpontja, így \(\displaystyle BAT\triangle\) egyenlőszárú, \(\displaystyle TBA\angle=\mu\), amiért \(\displaystyle BTA'\angle=2\mu\). A tükrözés miatt \(\displaystyle BA'T\angle=2\mu\), ezért \(\displaystyle BA'T\triangle\) egyenlőszárú, \(\displaystyle A'B=BT\). Ismét a tükrözés, illetve a Thalész-tétel miatt \(\displaystyle AC=A'B=BT=AD/2\).


Statistics on problem B. 4868.
54 students sent a solution.
3 points:Beke Csongor, Besenyi Tibor, Csiszár Zoltán, Csuha Boglárka, Deák Bence, Döbröntei Dávid Bence, Dömsödi Bálint, Fekete Balázs Attila, Fülöp Anna Tácia, Füredi Erik Benjámin, Garamvölgyi István Attila, Geretovszky Anna, Győrffy Ágoston, Horváth Péter, Jánosik Áron, Kerekes Anna, Kiss Roberta Zsófia, Kocsis Júlia, Kőrösi Ákos, Lajkó Áron, Lakatos Ádám, Lukács Lilla Réka, Márton Dénes, Mikulás Zsófia, Noszály Áron, Olosz Adél, Páli Petra, Paulovics Péter, Póta Balázs, Richlik Róbert, Saár Patrik, Sáfi Lilla, Scheidler Barnabás, Simon Dániel Gábor, Szabó 417 Dávid, Szécsényi Nándor, Szemerédi Levente, Szepesi Zoltán, Tanács Viktória, Tiderenczl Dániel, Tóth 111 Máté , Tran 444 Ádám, Vári-Kakas Andor, Várkonyi Dorka, Varsányi András, Williams Hajna, Zólomy Kristóf, Zsigri Bálint.
2 points:Török Ádám.
1 point:2 students.
0 point:2 students.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, April 2017

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley