KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

KöMaL Füzetek 1: Tálalási javaslatok matematika felvételire

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

B. 4871. Prove that the number \(\displaystyle a_n=1001001\ldots 1001\) (where \(\displaystyle n\) denotes the number of ones) cannot be a prime.

(3 points)

Deadline expired on 10 May 2017.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Az \(\displaystyle a_n\) számot megkaphatjuk egy mértani sorozat első \(\displaystyle n\) tagjának összegeként:

\(\displaystyle a_n=1000^{n-1}+1000^{n-2}+\dots+1000^2+1000+1=\frac{1000^n-1}{999}.\)

Ha \(\displaystyle a_n=p\) egy prímszám, akkor az \(\displaystyle a^3-b^3=(a-b)(a^2+ab+b^2)\) azonosságot használva:

\(\displaystyle 999p=1000^n-1=10^{3n}-1=(10^n-1)(10^{2n}+10^n+1).\)

Mivel \(\displaystyle p\) prímszám, ezért \(\displaystyle p\mid 10^n-1\) vagy \(\displaystyle p\mid 10^{2n}+10^n+1\), és így mindkét esetben \(\displaystyle p\leq 10^{2n}+10^n+1\). Ekkor viszont szükségképpen \(\displaystyle 10^n-1\leq 999\), vagyis \(\displaystyle n\leq 3\). Ezekben az esetekben \(\displaystyle a_n\) értéke és prímtényezős felbontása:

\(\displaystyle a_1=1,\)

\(\displaystyle a_2=1001=7\cdot 11\cdot 13,\)

\(\displaystyle a_3=1001001=3\cdot 333667.\)

Tehát \(\displaystyle a_n\) semmilyen \(\displaystyle n\) esetén nem lehet prímszám.


Statistics on problem B. 4871.
52 students sent a solution.
3 points:Busa 423 Máté, Csuha Boglárka, Daróczi Sándor, Deák Bence, Döbröntei Dávid Bence, Dömsödi Bálint, Fuisz Gábor, Fülöp Anna Tácia, Füstös Gergely, Győrffy Ágoston, György Levente, Jánosik Áron, Kerekes Anna, Kocsis Anett, Kocsis Júlia, Kővári Péter Viktor, Lajkó Áron, Lakatos Ádám, Laki 37 Dániel, Nagy 555 Botond, Noszály Áron, Páli Petra, Póta Balázs, Saár Patrik, Scheidler Barnabás, Szabó 417 Dávid, Szécsényi Nándor, Szemerédi Levente, Tiderenczl Dániel, Tiszay Ádám, Török Tímea, Tran 444 Ádám, Tubak Dániel, Vári-Kakas Andor, Várkonyi Dorka, Williams Hajna.
2 points:Al-Sayyed Zakariás, Ardai István Tamás, Berghammer Anna, Farkas Réka Boglárka, Fekete Balázs Attila, Füredi Erik Benjámin, Geretovszky Anna, Kovács 526 Tamás, Lukács Lilla Réka, Mikulás Zsófia, Olosz Adél, Riedel Zsuzsanna, Tóth-Rohonyi Iván.
1 point:2 students.
0 point:1 student.


  • Problems in Mathematics of KöMaL, April 2017

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley