KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem C. 1005. (November 2009)

C. 1005. An intercity train overtakes a freight train travelling on a parallel track. On its way back, the intercity also passes the freight train travelling in the opposite direction. The ratio of the speed of the IC to that of the freight train equals the ratio of the time of overtaking to the time of passing each other in opposite directions. By what factor is the IC faster than the freight train if each train travels at a constant speed?

(5 pont)

Deadline expired on 10 December 2009.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Jelölje az IC sebességét \(\displaystyle V\), a tehervonatét \(\displaystyle v\), az előzés időtartama legyen \(\displaystyle T\), az egymás mellett szemben elhaladásé pedig \(\displaystyle t\). A két vonat együttes hossza legyen \(\displaystyle l\). A feladat szerint \(\displaystyle \frac Vv = \frac Tt =k\). Az egymás mellett elhaladás közben megtett utakat számoljuk ki és hasonlítsuk össze: az egyirányú elhaladáskor a tehervonat \(\displaystyle vT\) utat tesz meg, az IC pedig \(\displaystyle VT\)-t, ami pontosan \(\displaystyle l\)-lel több a tehervonaténál, azaz \(\displaystyle vT + l =VT\). A szemben elhaladáskor a tehervonat \(\displaystyle vt\) utat, az IC \(\displaystyle Vt\) utat tesz meg, együtt pont \(\displaystyle l\)-t, azaz \(\displaystyle l=vt + Vt\). A két összefüggésből \(\displaystyle l=T(V-v)=t(V+v)\), amiből \(\displaystyle \displaystyle{\frac Tt = \frac{V+v}{V-v}}\). A sebességeket tartalmazó tört számlálóját és nevezőjét is \(\displaystyle v\)-vel osztva, illtve \(\displaystyle k\) állandót használva \(\displaystyle k=\frac{k+1}{k-1}\). Beszorzás után a másodfokú egyenlet megoldásai \(\displaystyle k=1+\sqrt 2\) ill. \(\displaystyle k=1-\sqrt 2\). Mivel \(\displaystyle k>1\), ezért az első arány felel meg a a feladat feltételeinek: \(\displaystyle \mathbf{k=1+\sqrt 2}\).


Statistics:

233 students sent a solution.
5 points:185 students.
4 points:6 students.
3 points:10 students.
2 points:11 students.
1 point:6 students.
0 point:15 students.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley