KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem C. 1007. (November 2009)

C. 1007. Prove that the diameter of the inscribed circle of a right-angled triangle is the geometric mean of the difference between the hypotenuse and one leg, and the double of the difference between the hypotenuse and the other leg.

(5 pont)

Deadline expired on 10 December 2009.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. A derékszögű háromszög befogóinak hossza legyenek \(\displaystyle a\) és \(\displaystyle b\), az átogójának hossza \(\displaystyle c\), a beírt körének sugara pedig \(\displaystyle r\). Az átfogó és a befogók különbségei \(\displaystyle c-a\) és \(\displaystyle c-b\), az átmérő hossza \(\displaystyle 2r\). Bizonyítandó, hogy \(\displaystyle 2r=\sqrt{2(c-a)\cdot (c-b)}\), vagy - négyzetreemelés és 2-vel való osztás után - \(\displaystyle 2r^2=(c-a)(c-b)\). Egy derékszögű háromszögben az oldalak és a beírt kör sugara között a következő összefüggéseket használhatjuk:

\(\displaystyle a+b=c+2r \)

a beírt kör érintőszakaszaiból,

\(\displaystyle ab=(a+b+c)r, \)

ami a terület kétszerese. Az utóbbi az első összefügés segítségével \(\displaystyle ab=2r(a+b-r)\) alakban is felírható.

\(\displaystyle (c-a)(c-b)=c^2-(a+b)c + ab=a^2 + b^2 -(a+b)(a+b-2r)+ab\) Pithagoras tételének és az első összefüggésnek a felhasználásával. A szorzatot kifejtve a továbbiakban a második összefüggést használjuk:

\(\displaystyle =2r(a+b)-ab=2r\big( (a+b)-(a+b-r)\big)=2r^2\), amit igazolnunk kellett.


Statistics:

255 students sent a solution.
5 points:193 students.
4 points:50 students.
3 points:2 students.
2 points:5 students.
1 point:3 students.
0 point:1 student.
Unfair, not evaluated:1 solution.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley