KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem C. 1021. (February 2010)

C. 1021. P is a point on side AC, and Q is a point on side BC of triangle ABC. The line through P, parallel to BC intersects AB at K, and the line through Q, parallel to AC intersects AB at L. Prove that if PQ is parallel to AB then AK=BL.

(5 pont)

Deadline expired on 10 March 2010.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Legyen a \(\displaystyle P'\) a \(\displaystyle BC\) oldalon és \(\displaystyle Q'\) az \(\displaystyle AC\) oldalon az a pont, amire \(\displaystyle PP'\) és \(\displaystyle QQ'\) párhuzamos \(\displaystyle AB\)-vel. Ekkor \(\displaystyle \vec{PP'}=\vec{KB}\) és \(\displaystyle \vec{Q'Q}=\vec{AL}\). Másrészről pedig \(\displaystyle \vec{AK}=\vec{AL}-\vec{KL}=\vec{Q'Q}-\vec{KL}\) és \(\displaystyle \vec{LB}=\vec{KB}-\vec{KL}=\vec{PP'}-\vec{KL}\). Ha \(\displaystyle PQ\) párhuzamos \(\displaystyle AB\)-vel, akkor \(\displaystyle PP'\), \(\displaystyle Q'Q\) és \(\displaystyle PQ\) egybeesnek. Így \(\displaystyle \vec{AK}=\vec{LB}\), ami azt is jelenti, hogy \(\displaystyle AK=LB\).


Statistics:

291 students sent a solution.
5 points:163 students.
4 points:84 students.
3 points:11 students.
2 points:20 students.
1 point:6 students.
0 point:6 students.
Unfair, not evaluated:1 solution.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley