KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1034. A regular hexagon is rotated about its axes of symmetry. Find the ratio of the surface areas of the resulting solids.

(5 points)

Deadline expired on 10 May 2010.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. A szabályos hatszögnek kétféle szimmetriatengelye van.

Először tekintsük azt, amelyik két szemközti oldal felezőpontján megy át. Ezen tengely körül forgatva a hatszöget két egybevágó csonkakúp keletkezik. A kérdéses felszín két csonkakúp-palást felszínéből és két kör területéből áll (az alapkör területét nem kell figyelembe venni).

Legyen a hatszög oldala egységnyi, ekkor a fedőkör sugara \(\displaystyle r=\frac{1}{2}\), az alapkör sugara \(\displaystyle R=1\), a csonkakúp alkotója \(\displaystyle a=1\). A fedőkör területe \(\displaystyle \frac{1}{4}\,\pi\), a csonkakúp palást területe \(\displaystyle \frac{3}{2}\,\pi\).

A keresett felszín:

\(\displaystyle F_1=2\cdot \frac{1}{4}\,\pi+ 2\cdot \frac{3}{2}\,\pi= \frac{7}{2}\,\pi. \)

A másik esetben a szimmatriatengely a hatszög két szemközti csúcsán megy át. Ekkor a forgatáskor két egybevágó kúp és egy henger jön létre.

Tekintsük az \(\displaystyle ABC\) egyenlőszárú háromszöget. Az \(\displaystyle AC\) felezőpontja legyen \(\displaystyle D\). A \(\displaystyle BDC\) háromszög egy 1 egység oldalú szabályos háromszög fele, ezért \(\displaystyle r=\frac{\sqrt{3}}{2}\).

A felszín a két kúppalást és a hengerpalást területének összege:

\(\displaystyle T_{\text{kúpok}} = 2r\pi a= 2\cdot \frac{\sqrt{3}}{2}\,\pi\cdot 1= \sqrt{3}\,\pi,\)

\(\displaystyle T_{\text{henger}} = 2r\pi m= \sqrt{3}\, \pi.\)

A két felszín összege \(\displaystyle F_2= 2\sqrt{3}\,\pi\).

A felszínek aránya:

\(\displaystyle \frac{F_1}{F_2}= \frac{\frac{7}{2}\,\pi}{2\sqrt{3}\, \pi}= \frac{7}{4\sqrt{3}}\approx 1{,}0104. \)

A két forgástest felszíne közelítőleg egyenlő.

Keceli-Mészáros Emese (Budapest, Szent István Gimn., 9. évf.)


Statistics on problem C. 1034.
163 students sent a solution.
5 points:94 students.
4 points:21 students.
3 points:17 students.
2 points:15 students.
1 point:11 students.
0 point:3 students.
Unfair, not evaluated:2 solutions.


  • Problems in Mathematics of KöMaL, April 2010

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley