KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1042. Solve the equation x+y=x2-xy+y2, where x and y are integers.

(5 points)

Deadline expired on 11 October 2010.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Rendezzük az egyenletet \(\displaystyle x^2-(y+1)x+y^2-y=0\) alakra, és vizsgáljuk, mint másodfokú egyenletet \(\displaystyle y\) paraméterrel. Az egyenlet diszkriminánsa \(\displaystyle (y+1)^2-4(y^2-y)=1+6y-3y^2\). Az egyenletnek lesz megoldása, ha a diszkrimináns nemnegatív. Vizsgáljuk tehát (az ellentétét véve) a \(\displaystyle 3y^2-6y-1\le 0\) másodfokú egyenlőtlenséget. Ez teljesül, ha \(\displaystyle y\) legalább akkora, mint a bal oldal kisebbik gyöke, de legfeljebb akkora, mint a nagyobbik. A gyököket megoldóképlettel megkeresve kapjuk, hogy \(\displaystyle \displaystyle{1-\frac{2\sqrt 3}{3}\le y \le 1+\frac{2\sqrt 3}{3}}\). Mivel a feladat szerint \(\displaystyle y\) egész, ezért \(\displaystyle y\) lehetséges értékei a \(\displaystyle 0\), \(\displaystyle 1\), \(\displaystyle 2\). Megjegyezzük, hogy az eredeti egyenletben \(\displaystyle x\) és \(\displaystyle y\) szerepe szimmetrikus volt, ezért \(\displaystyle x\) szintén csak \(\displaystyle 0\), \(\displaystyle 1\) vagy \(\displaystyle 2\) lehet. A lehetséges értékeket sorba behelyettesítve megoldandó tehát az \(\displaystyle x^2-x=0\) (x=0, 1), \(\displaystyle x^2-2x=0\) (x=0, 2) és az \(\displaystyle x^2-3x+2=0\) (x=1, 2) egyenletek. Az \(\displaystyle x+y=x^2-xy+y^2\) egyenlet megoldáshalmaza tehát: {(0, 0), (1, 0), (0, 1), (2, 1), (1, 2), (2, 2)} .


Statistics on problem C. 1042.
295 students sent a solution.
5 points:128 students.
4 points:17 students.
3 points:29 students.
2 points:30 students.
1 point:41 students.
0 point:41 students.
Unfair, not evaluated:9 solutions.


  • Problems in Mathematics of KöMaL, September 2010

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley