KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem C. 1046. (October 2010)

C. 1046. Let \alpha(n) denote the measure of the interior angles of a regular n-sided polygon. What is n if \alpha(n+3)-\alpha(n)=\alpha(n)-\alpha(n-2)?

(5 pont)

Deadline expired on 10 November 2010.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. \(\displaystyle \alpha(n)= (n-2)\cdot \frac{180^\circ}{n}\), ezért a feltételt í­gy írhatjuk fel (\(\displaystyle n\ge 3\)):

\(\displaystyle (n+1)\cdot \frac{180^\circ}{n+3}-(n-2)\cdot \frac{180^\circ}{n}=(n-2)\cdot \frac{180^\circ}{n}-(n-4)\cdot \frac{180^\circ}{n-2}. \)

\(\displaystyle 180^\circ\)-kal való egyszerűsí­tés és rendezés után \(\displaystyle \displaystyle{\frac{n+1}{n+3}+\frac{n-4}{n-2}=\frac{2(n-2)}{n}}\), majd \(\displaystyle n(n^2-n-2+n^2-n-12)=2(n-2)(n^2+n-6)\), amiből \(\displaystyle -14n=-16n+24\), ahonnan \(\displaystyle n=12\).


Statistics:

327 students sent a solution.
5 points:278 students.
4 points:11 students.
3 points:17 students.
2 points:4 students.
1 point:2 students.
0 point:8 students.
Unfair, not evaluated:7 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley