KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1047. A fair coin is tossed ten times in a row. Every time a head is tossed, a digit of 2 is written down. When a tail is tossed, a digit of 3 is written down. What is the probability that the resulting ten-digit number is divisible by a) 3, b) 4?

(5 points)

Deadline expired on 10 November 2010.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. A felírható összes szám száma \(\displaystyle 2^{10}=1024\).

\(\displaystyle a)\) A kapott szám osztható 3-mal, ha számjegyeinek összege osztható 3-mal. Mivel a szám 2-es és 3-as számjegyekből áll, ezért aszámjegyek összege pontosan akkor lesz 3-mal osztható, ha a 2-esek száma 3-mal osztható, azaz 9, 6, 3, 0 db 2-es van benne. Felhasználva azt, hogy ha egy 10-jegyű számban \(\displaystyle n\) db 2-es és \(\displaystyle 10-n\) db 3-as van, akkor a különböző 10-jegyű számok száma \(\displaystyle \frac{10!}{n!\cdot (10-n)!}\), a 3-mal osztható számok száma \(\displaystyle 10+210+120+1=341\). Ezért annak a valószínűsége, hogy 3-mal osztható számot kapunk \(\displaystyle \frac{341}{1024}\approx 0,333\).

\(\displaystyle b)\) Egy szám akkor osztható 4-gyel, ha az utolsó két számjegyből álló szám osztható 4-gyel. A rendelkezésünkre álló számjegyekkel ez a végződés \(\displaystyle 22\), \(\displaystyle 23\), \(\displaystyle 32\) vagy \(\displaystyle 33\) lehet. Ezek küzöl csak a \(\displaystyle 32\) jó. Mivel \(\displaystyle 2^8=256\) különböző tízjegyű szám végződik \(\displaystyle 32\)-re, azaz pont a számok negyede, ezért annak a valószínűsége, hogy a kapott szám 4-gyel osztható \(\displaystyle \frac 14\).


Statistics on problem C. 1047.
395 students sent a solution.
5 points:203 students.
4 points:95 students.
3 points:51 students.
2 points:16 students.
1 point:13 students.
0 point:12 students.
Unfair, not evaluated:5 solutions.


  • Problems in Mathematics of KöMaL, October 2010

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley