KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1051. A natural number n is chosen between two consecutive square numbers. The smaller square is obtained by subtracting k from n, and the larger one is obtained by adding l to n. Prove that the number n-kl is a perfect square.

(5 points)

Deadline expired on 10 December 2010.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. A két egymást követő négyzetszám legyen \(\displaystyle x^2\) és \(\displaystyle (x+1)^2\). Így a feladat szerint \(\displaystyle n, k, l\)-re \(\displaystyle x^2+k=n\) és \(\displaystyle n+l=(x+1)^2\). Kifejezve \(\displaystyle k\)-t és \(\displaystyle l\)-t \(\displaystyle k=n-x^2\) és \(\displaystyle l=(x+1)^2-n\) a vizsgálandó kifejezés \(\displaystyle n-kl=n-(n-x^2)((x+1)^2-n)=n-(n(x+1)^2)-n^2-x^2(x+1)^2+nx^2)=n-n(2x^2+2x+1)+n^2+(x(x+1))^2=(x(x+1)-n)^2\), ami valóban négyzetszám.


Statistics on problem C. 1051.
211 students sent a solution.
5 points:168 students.
4 points:22 students.
3 points:4 students.
2 points:4 students.
1 point:7 students.
0 point:2 students.
Unfair, not evaluated:3 solutions.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, November 2010

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley