KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1064. The real numbers x, y, z, in this order, are the first three terms of a non-constant arithmetic progression. Given that cos x+cos y+cos z=1 and \sin x + \sin y + \sin z = \frac{1}{\sqrt 2}, find the tangent of the 12th term.

(5 points)

Deadline expired on 10 February 2011.


Google Translation (Sorry, the solution is published in Hungarian only.)

1. megoldás: Mindkét egyenletnek vegyük a négyzetét:

\(\displaystyle \cos^2 x +\cos^2 y +\cos^2 z +2\cos x \cos y + 2\cos x\cos z + 2\cos y\cos z=1,\)

\(\displaystyle \sin^2 x +\sin^2 y +\sin^2 z +2\sin x \sin y + 2\sin x\sin z + 2\sin y\sin z=\frac 12.\)

Ezen egyenletek összege, felhasználva a \(\displaystyle \cos^2 \varphi + \sin^2 \varphi =1\) (``pithagoraszi'') azonosságot és a \(\displaystyle \cos\alpha \cos\beta + \sin\alpha \sin\beta = \cos (\alpha - \beta) = \cos (\beta - \alpha)\) (addíciós) azonosságot, a \(\displaystyle 3 + 2\cos (y-x) + 2\cos (z-x) + 2\cos (z-y)=\frac 32\) . Tekintve, hogy \(\displaystyle x, y,z\) egy számtani sorozat egymást követő tagjai, ezért a különbségük a sorozat differenciájával (\(\displaystyle d>0\)) kifejezhető. Ezért egyenletünk - átrendezés után \(\displaystyle \cos d + \cos (2d) + \cos d =-\frac 34\) lesz. \(\displaystyle \cos 2\alpha = 2\cos^2\alpha -1\) azonosság alapján megoldandó a \(\displaystyle 2\cos^2 d + 2\cos d - \frac 14 =0\) másodfokú trigonometrikus egyenlet, ahonnan \(\displaystyle \cos d=\sqrt{\frac 38}-\frac 12\approx 0,11237\) (tekintve, hogy \(\displaystyle \cos\varphi \ge -1\)), ahonnan \(\displaystyle d_1\approx 1,4582 + 2k\pi\) vagy \(\displaystyle d_2\approx 4,825 + 2l\pi\) (\(\displaystyle k,l>0\) egész). A feladatbeli első egyenletet \(\displaystyle x=y-d\) és \(\displaystyle z=y+d\) felhaszánálásával az addíciós képletek szerint \(\displaystyle 2\cos y \cos d + \cos y=1\), amiből \(\displaystyle \cos y=\frac 1{1+2\cos d} = \sqrt{\frac 23} \approx 0,8165\). Tehát \(\displaystyle y_1\approx 0,61548 + 2m\pi\) vagy \(\displaystyle y_2\approx 5,6677 + 2n\pi\) (\(\displaystyle m, n\) egész). Mivel a sorozat \(\displaystyle a=a_{12}=a_2+10d\)-ként számolható, ezért \(\displaystyle a^1=y_1+10d_1\approx 2,07368 +2k'\pi\), \(\displaystyle a^2=y_1+10d_2\approx 5,44048 +2l'\pi\), \(\displaystyle a^3=y_2+10d_1\approx 0,84271+2m'\pi\) és \(\displaystyle a^4=y_2+10d_2\approx 4,20951+2n'\pi\) (\(\displaystyle k', l', m', n'\) egész), Így a sorozat 12. tagjának tangense (az elöbbi sorozatoknak megfelelően) kb. -1,818, -1,12172, 1,12172, 1,818 (hiszen az első és negyedik, illetve második és harmadik esetben egymás ellentettei lesznek a 12. tagok (mod \(\displaystyle 2\pi\))).

2. megoldás: Egyből a különbséget beírva alkalmazzuk az addíciós képleteket mindkét egyenletre, melyek hányadosából \(\displaystyle \tg y=\frac 1{\sqrt 2}\), és ezzel \(\displaystyle \cos d\) számolható. Innen a megoldás ugyanúgy folytatható, mint az 1. megoldásban.


Statistics on problem C. 1064.
78 students sent a solution.
5 points:Antal Viktória, Béres Bertold, Bingler Arnold, Gehér Péter, Gyurcsik Dóra, Kasó Márton, Márki Gabriella, Németh Klára Anna, Ujhelyi Viktor, Vargha Sára, Vesztergombi Tamás.
4 points:Almási Dorottya, Barta Szilveszter Marcell, Enyedi Péter, Fonyó Viktória, Fülep Andrea , Szabó 928 Attila, Szentes Ákos.
3 points:26 students.
2 points:5 students.
1 point:9 students.
0 point:18 students.
Unfair, not evaluated:2 solutions.


  • Problems in Mathematics of KöMaL, January 2011

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley