KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1074. Find the distance between edge AB of a unit cube and diagonal EC of the cube (see the figure).

(5 points)

Deadline expired on 11 April 2011.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Két kitérő egyenes távolsága nem más, mint a rájuk illeszkedő, egymással párhuzamos síkok távolsága. Ezt megkaphatjuk úgy, hogy az egyik síkra állítunk egy merőleges síkot, hogy a metszésvonaluk az adott egyenes legyen. Ez a merőleges sík a másik egyenest metszi (mert nem lehet párhuzamos vele). A metszésponton átmenő, az első egyenesre merőleges egyenes mindkét egyenesre és mindkét - a rájuk fektetett, egymással párhuzamos - síkra is merőleges: a metszéspontok által meghatározott szakasz hossza lesz a két egyenes távolsága.

Megmutatjuk, hogy az \(\displaystyle AB\) él \(\displaystyle M\) felezőpontja és a \(\displaystyle CE\) testátló \(\displaystyle N\) felezőpontja által meghatározott szakasz merőleges mind \(\displaystyle AB\)-re, mind \(\displaystyle CE\)-re, ezért ezen szakasz hossza lesz a keresett távolság. \(\displaystyle N\) a kocka középpontja, \(\displaystyle M\) tükörképe \(\displaystyle N\)-re pont a \(\displaystyle GH\) él felezőpontja, \(\displaystyle M'\). Mivel \(\displaystyle MM'GB\) paralelogramma (\(\displaystyle MB\) párhuzamos és egyenlő hosszú \(\displaystyle M'G\)-vel), ezért \(\displaystyle MN=\frac{\sqrt 2}{2}\). Mivel \(\displaystyle MN\) benne van az \(\displaystyle AB\) felező merőleges síkjában, ezért \(\displaystyle MN\) merőleges \(\displaystyle AB\)-re. Másrészről \(\displaystyle FC=\frac{\sqrt3}2\), mert a testátló fele, ezért Pithagorsz tétel megfordítását alkalmazva \(\displaystyle MN^2+FC^2=\frac12 + \frac34=\frac54\) és \(\displaystyle MC\), az \(\displaystyle MBC\) derékszögű háromszög átfogója, tehát (Pithagorasz tétellel) \(\displaystyle MC^2=MB^2+BC^2=\frac 14 + 1=\frac54\), azaz \(\displaystyle MN^2+FC^2=MC^2\): \(\displaystyle MN\) merőleges \(\displaystyle EC\)-re. A keresett távolság tehát \(\displaystyle MN=\frac{\sqrt 2}{2}\).


Statistics on problem C. 1074.
133 students sent a solution.
5 points:88 students.
4 points:11 students.
2 points:15 students.
1 point:7 students.
0 point:7 students.
Unfair, not evaluated:5 solutions.


  • Problems in Mathematics of KöMaL, March 2011

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley