KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1075. Find the three-digit number that is twelve times the sum of its digits.

(5 points)

Deadline expired on 10 May 2011.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. \(\displaystyle N=\overline{abc}=100a+10b+c=12(a+b+c)\) a feladat szerint: \(\displaystyle 88a-2b=11c\) szerint \(\displaystyle c\) páros, ugyanakkor \(\displaystyle 2b=11(8a-c)\) miatt \(\displaystyle b\) osztható 11-gyel. Mivel \(\displaystyle b\le 9\), ezért \(\displaystyle b=0\) és így \(\displaystyle 8a=c\), amiből \(\displaystyle c\le 9\) figyelembevételével \(\displaystyle a=1\), \(\displaystyle c=8\): \(\displaystyle \mathbf{N=108}\).


Statistics on problem C. 1075.
218 students sent a solution.
5 points:128 students.
4 points:39 students.
3 points:27 students.
2 points:14 students.
1 point:7 students.
0 point:1 student.
Unfair, not evaluated:2 solutions.


  • Problems in Mathematics of KöMaL, April 2011

  • Támogatóink:   Ericsson   Google   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program  
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley