KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem C. 1104. (December 2011)

C. 1104. Every angle of a hexagon is 120o, and the lengths of its sides are \sqrt{3-\sqrt 3} and \sqrt{9-3\sqrt 3}, alternating. Prove that the area of the hexagon is an integer.

(5 pont)

Deadline expired on 10 January 2012.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Hosszabbítsuk meg a hatszög \(\displaystyle \sqrt{3-\sqrt3}\) hosszúságú oldalait: ezen egyenesek egy szabályos háromszöget határoznak meg, melynek oldalai \(\displaystyle \sqrt{3-\sqrt3}+2\sqrt{9-3\sqrt3}\) hosszúságúak. Ezen háromszög csácsainál egy-egy \(\displaystyle \sqrt{9-3\sqrt3}\) oldalú szabályos háromszöget levágva kapjuk a feladat hatszögét: területet is ez alapján számoljuk ki.

\(\displaystyle t=\sqrt{3-\sqrt3}(1+2\sqrt3)^2 \cdot \frac{ \sqrt3}4-3(\sqrt3\sqrt{3-\sqrt3})^2 \cdot \frac{\sqrt3}{4} = (3-\sqrt3)\cdot \frac{\sqrt3}{4}\cdot (13+4\sqrt3 -9)=(3-\sqrt3)(3+\sqrt3)=6.\)


Statistics:

278 students sent a solution.
5 points:121 students.
4 points:82 students.
3 points:49 students.
2 points:15 students.
1 point:5 students.
0 point:3 students.
Unfair, not evaluated:3 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley