KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem C. 1107. (January 2012)

C. 1107. Solve the following simultaneous equations on the set of real number pairs: 3x2-xy+3y2=16, 7x2-4xy+7y2=38.

(5 pont)

Deadline expired on 10 February 2012.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Vonjuk ki az első egyenlet kétszeresét a második egyenletből: a bal oldal szorzattá alakítható: \(\displaystyle (x-y)^2=6\).

Vonjuk ki az első egyenlet négyszereséből a második egyenletet: \(\displaystyle 5x^2+5y^2=26\).

Az első összefüggésből \(\displaystyle x=y\pm \sqrt 6\), amit a másodikba helyettesítve és osztva 10-zel az \(\displaystyle 2y^2 \pm\sqrt 6 y +0,8=0\) egyenletet kapjuk. Ennek megoldásai a \(\displaystyle \frac{\mp\sqrt6\pm \sqrt{4,4}}{2}=\mp \sqrt{1,5}\pm\sqrt{1,1}\).

Az egyenletrendszer megoldásai:

\(\displaystyle x\) \(\displaystyle y\)
\(\displaystyle \sqrt{1,5}+\sqrt{1,1}\) \(\displaystyle -\sqrt{1,5}+\sqrt{1,1}\)
\(\displaystyle \sqrt{1,5}-\sqrt{1,1}\) \(\displaystyle -\sqrt{1,5}-\sqrt{1,1}\)
\(\displaystyle -\sqrt{1,5}+\sqrt{1,1}\) \(\displaystyle \sqrt{1,5}+\sqrt{1,1}\)
\(\displaystyle -\sqrt{1,5}-\sqrt{1,1}\) \(\displaystyle \sqrt{1,5}-\sqrt{1,1}\)

Statistics:

279 students sent a solution.
5 points:164 students.
4 points:51 students.
3 points:31 students.
2 points:16 students.
1 point:6 students.
0 point:5 students.
Unfair, not evaluated:6 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley