KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1124. Solve the following simultaneous equations: xx+y=y3, yx+y=x12.

(5 points)

Deadline expired on 10 May 2012.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Kikötések: x>0, y>0. Vegyük mindkét egyenletben a két oldal 10-es alapú logaritmusát:

lg xx+y=lg y3,

lg yx+y=lg x12.

Ezekből

(x+y)lg x=3lg y,

(x+y)lg y=12lg x.

Ha lg x vagy lg y közül valamelyik 0, akkor abból x=1 és y=1 következik. Ha egyik sem 0, akkor a két egyenletet elosztva egymással:

\frac{\lg y}{\lg x}=4\cdot\frac{\lg x}{\lg y}.

Ebből

\frac{\lg x}{\lg y}=\pm \frac12.

Ha \frac{\lg x}{\lg y}=\frac12, akkor \lg x=\frac12 \lg y=\lg
\sqrt y, vagyis x=\sqrt y. Ezt behelyettesítve az eredeti első egyenletbe:

\sqrt y^{y+\sqrt y}=y^3,

\left(y^{\frac12}\right)^{y+y^\frac12}=y^3,

y^{\frac12y+\frac12y^{\frac12}}=y^3,

mivel most y\neq1, ezért a függvények szigorú monotonitása miatt

\frac12y+\frac12 y^{\frac12}=3.

Ez \sqrt y-ra másodfokú egyenlet, gyökei 2 és -3. Ez utóbbi negatív, tehát nem jó. Az elsőből pedig y=4 és x=\sqrt4=2 következik.

Ha \frac{\lg x}{\lg y}=-\frac12, akkor \lg x=-\frac12\lg y=\lg
\frac{1}{\sqrt y}, amiből x=\frac{1}{\sqrt y}. Ezt az eredeti második egyenletbe helyettesítve:

y^{\frac{1}{\sqrt y}+y}=\left(\frac{1}{\sqrt
y}\right)^{12}=y^{-6},

amiből a szigorú monotonitás miatt

\frac{1}{\sqrt y}+y=-6

következik. Azonban itt a baloldal pozitív, a jobb oldal negatív, ami lehetetlen.

Az egyenletrendszer megoldása tehát az x1=1, y1=1 és az x2=2, y2=4 számpár.


Statistics on problem C. 1124.
118 students sent a solution.
5 points:Antalicz Balázs, Beke P. Tamás, Fekete Panna, Holczer András, Nagy Zsuzsika, Patkó Richárd, Petrényi Márk, Tóth Zsófia, Varga 911 Szabolcs.
4 points:76 students.
3 points:21 students.
2 points:7 students.
1 point:3 students.
0 point:2 students.


  • Problems in Mathematics of KöMaL, April 2012

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley