KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1137. The first two terms of the Fibonacci sequence are a1=1, a2=1, and every further term equals the sum of the two preceding terms, that is, an=an-2+an-1 (n\ge3). Prove that the sequence has no term that leaves a remainder of 4 when divided by 13.

(5 points)

Deadline expired on 12 November 2012.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. A 13-mal való osztási maradékok sorozatát jelölje \(\displaystyle b_1\), \(\displaystyle b_2\) stb. Nyilván \(\displaystyle b_{n}=b_{n-2}+b_{n-1}\) is teljesül.

Írjuk fel a \(\displaystyle b_n\) sorozatot:

\(\displaystyle 1,~1,~2,~3,~5,~8,~0,~8,~8,~3,~11,~1,~12,~0,~12,~12,~11,~10,~8,~5,~0,~5,~5,~10,~2,~12,~1,~0,~1,~1,\ldots\)

Innentől kezdve a maradékok sorozata ismétlődik. Látható, hogy egyik maradék sem 4, vagyis valóban nincs a Fibonacci sorozatnak olyan tagja, ami 13-mal osztva 4 maradékot ad.


Statistics on problem C. 1137.
293 students sent a solution.
5 points:243 students.
4 points:12 students.
3 points:11 students.
2 points:4 students.
1 point:6 students.
0 point:16 students.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, October 2012

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley