KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem C. 1149. (December 2012)

C. 1149. The number of one-element subsets, the number of two-element subsets and the number of three-element subsets of a set of more than three elements are consecutive terms of an arithmetic progression. How many elements does the set have?

(5 pont)

Deadline expired on 10 January 2013.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Legyen a halmaz \(\displaystyle n\) elemű. Ekkor felírható: \(\displaystyle \binom n1 +\binom n3 =2\binom n2\), ahol \(\displaystyle n\geq3\). Ebből rendezéssel:

\(\displaystyle n+\frac{n(n-1)(n-2)}{6}=2\cdot\frac{n(n-1)}{2},\)

\(\displaystyle 6n+n(n-1)(n-2)=6n(n-1).\)

Osztva \(\displaystyle n\neq0\)-val:

\(\displaystyle 6+(n-1)(n-2)=6(n-1),\)

\(\displaystyle n^2-9n+14=(n-2)(n-7)=0.\)

Mivel \(\displaystyle n\geq3\), ezért az egyetlen megoldás \(\displaystyle n=7\), a halmaz 7 elemű.


Statistics:

284 students sent a solution.
5 points:132 students.
4 points:96 students.
3 points:23 students.
2 points:11 students.
1 point:9 students.
0 point:9 students.
Unfair, not evaluated:4 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley