KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1157. For what value of the real parameter a will the equation ax^2+a^2 x+a= \frac 1a have two equal roots?

(5 points)

Deadline expired on 11 March 2013.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Rendezzük az egyenletet:

\(\displaystyle ax^2+a^2x+a-\frac1a=0.\)

Két egyenlő gyök pontosan akkor van, ha az egyenlet diszkriminánsa 0:

\(\displaystyle 0=a^4-4a(a-1/a)=a^4-4a^2+4=(a^2-2)^2.\)

Ez pedig pontosan akkor teljesül, ha \(\displaystyle a^2=2\), vagyis \(\displaystyle a=\pm\sqrt2\).


Statistics on problem C. 1157.
262 students sent a solution.
5 points:208 students.
4 points:33 students.
2 points:3 students.
1 point:9 students.
0 point:9 students.


  • Problems in Mathematics of KöMaL, February 2013

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley