KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem C. 1170. (May 2013)

C. 1170. Agnes was born on 25 March and her brother Peter was born on 9 February. They would like to construct a third-degree function f of integer coefficients, such that f(9)=2 and f(25)=3. Is there such a function?

(5 pont)

Deadline expired on 10 June 2013.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Legyen \(\displaystyle f(x)=ax^3+bx^2+cx+d\), ahol \(\displaystyle a\), \(\displaystyle b\), \(\displaystyle c\) és \(\displaystyle d\) egész számok. Tudjuk, hogy \(\displaystyle x_1=9\), \(\displaystyle x_2=25\). Ekkor

\(\displaystyle f(x_2)-f(x_1)=(ax_2^3+bx_2^2+cx_2+d)-(ax_1^3+bx_1^2+cx_1+d)=\)

\(\displaystyle =(x_2-x_1)[a(x_2^2+x_1x_2+x_1^2)+b(x_2+x_1)+c].\)

Láthatóan a második tényező egész szám. A feltételek alapján \(\displaystyle f(x_2)-f(x_1)=3-2=1\), aminek oszthatónak kellene lenni \(\displaystyle (x_2-x_1)\)-gyel. Mivel \(\displaystyle x_2-x_1=16\), ezért ez lehetetlen.

Ilyen függvény tehát nem létezik.


Statistics:

97 students sent a solution.
5 points:88 students.
4 points:3 students.
3 points:5 students.
1 point:1 student.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley