KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1170. Agnes was born on 25 March and her brother Peter was born on 9 February. They would like to construct a third-degree function f of integer coefficients, such that f(9)=2 and f(25)=3. Is there such a function?

(5 points)

Deadline expired on 10 June 2013.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Legyen \(\displaystyle f(x)=ax^3+bx^2+cx+d\), ahol \(\displaystyle a\), \(\displaystyle b\), \(\displaystyle c\) és \(\displaystyle d\) egész számok. Tudjuk, hogy \(\displaystyle x_1=9\), \(\displaystyle x_2=25\). Ekkor

\(\displaystyle f(x_2)-f(x_1)=(ax_2^3+bx_2^2+cx_2+d)-(ax_1^3+bx_1^2+cx_1+d)=\)

\(\displaystyle =(x_2-x_1)[a(x_2^2+x_1x_2+x_1^2)+b(x_2+x_1)+c].\)

Láthatóan a második tényező egész szám. A feltételek alapján \(\displaystyle f(x_2)-f(x_1)=3-2=1\), aminek oszthatónak kellene lenni \(\displaystyle (x_2-x_1)\)-gyel. Mivel \(\displaystyle x_2-x_1=16\), ezért ez lehetetlen.

Ilyen függvény tehát nem létezik.


Statistics on problem C. 1170.
97 students sent a solution.
5 points:88 students.
4 points:3 students.
3 points:5 students.
1 point:1 student.


  • Problems in Mathematics of KöMaL, May 2013

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley