KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1180. Investigate which of the squares inscribed in an acute-angled triangle has maximum side.

Suggested by R. Gyimesi

(5 points)

This problem is for grade 11 - 12 students only.

Deadline expired on 10 October 2013.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Először határozzuk meg a háromszög \(\displaystyle a\) oldalára illesztett négyzet oldalának hosszát. Az \(\displaystyle AKI\) és az \(\displaystyle ABC\) háromszögek szögei egyenlők, ezért hasonlóak, és így \(\displaystyle \frac xa=\frac{m_a-x}{m_a}\), amiből \(\displaystyle x=\frac{am_a}{a+m_a}\).

Tekintsük például az \(\displaystyle a<b\) esetet. Azt kell eldöntenünk, hogy az \(\displaystyle \frac{am_a}{a+m_a}\) és a \(\displaystyle \frac{bm_b}{b+m_b}\) hosszúságú szakaszok melyike a nagyobb. Mivel \(\displaystyle am_a=2t=bm_b\), ahol \(\displaystyle t\) az \(\displaystyle ABC\) háromszög területét jelöli, ezért elegendő a törtek nevezőjét összehasonlítanunk. Ennek érdekében tekintsük a két nevező eltérését:

\(\displaystyle a+m_a-(b+m_b)=a-b+\frac{2t}{a}-\frac{2t}{b}=(a-b)\left(1-\frac{2t}{ab}\right)\leq0,\)

hiszen a szorzat első tényezője negatív, a második pedig nem negatív (\(\displaystyle m_a\leq b\) miatt ugyanis \(\displaystyle 2t=am_a\leq ab\)). (Egyenlőség csak \(\displaystyle a\perp b\) esetén teljesülhet.)

Arra jutottunk tehát, hogy \(\displaystyle a<b\) esetén az \(\displaystyle a+m_a\) összeg nem lehet nagyobb a \(\displaystyle b+m_b\) összegnél, ebből kifolyólag az \(\displaystyle a\) oldalon "nyugvó" négyzet oldala legalább akkora, mint a \(\displaystyle b\) oldalra "támaszkodóé".


Statistics on problem C. 1180.
47 students sent a solution.
5 points:Bereczki Zoltán, Farkas Dóra, Hegel Patrik, Horváth Bendegúz, Kovács 972 Márton, Orbán Szandra, Sziegl Benedek, Tóth Zsófia.
4 points:Barna Kinga, Meleg András, Németh Klára Anna, Pammer Tamás, Temesvári Fanni, Tomai Fanni.
3 points:4 students.
2 points:6 students.
1 point:6 students.
0 point:17 students.


  • Problems in Mathematics of KöMaL, September 2013

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley