KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem C. 1181. (September 2013)

C. 1181. Prove that (sin \alpha+1)(cos \alpha+1)<3 for all angles \alpha.

(5 pont)

Deadline expired on 10 October 2013.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. \(\displaystyle (\sin x+1)( \cos x +1)=\sin x\cos x +\sin x+\cos x+1\), ami pontosan akkor kisebb 3-nál, ha \(\displaystyle \sin x\cos x +\sin x+\cos x<2\). Tudjuk, hogy \(\displaystyle \sin x\cos x=\frac12\sin2x\leq\frac12\cdot1=\frac12\). Azt is tudjuk, hogy \(\displaystyle \frac{\sin x+\cos x}{2}\leq\frac{|\sin x|+|\cos x|}{2}\leq\sqrt{\frac{|\sin x|^2+|\cos x|^2}{2}}=\frac{1}{\sqrt2}\). Ezek alapján \(\displaystyle \sin x\cos x +\sin x+\cos x\leq\frac12+\frac{2}{\sqrt2}\approx1,91<2\).


Statistics:

114 students sent a solution.
5 points:Bálint Karola, Balogh Sebestyén, Belényesi Máté, Bereczki Zoltán, Csernák Tamás, Csikós Endre, Denke Dorottya, Dombrovszky Borbála, Farkas Dóra, Fényes Balázs, Ficsor Enikő, Gnandt Balázs, Hári Krisztina, Hegel Patrik, Hegyesi János Géza, Jójárt Alexandra, Juhász Gellért, Kácsor Szabolcs, Kovács 628 Márton, Kovács 972 Márton, Krisztián Jonatán, Máté Bálint, Németh Klára Anna, Nguyen Anh Tuan, Nyíri Tamás, Orbán Szandra, Pammer Tamás, Paulovics Zoltán, Porupsánszki István, Putti Krisztián, Qian Lívia, Rápolti Kitti, Szabó 524 Tímea, Szerző Ágoston, Sziegl Benedek, Szőke Tamás, Szűcs Dorina, Tari Balázs, Urbán Norbert, Vu Lien Viola, Zsiros Ádám.
4 points:18 students.
3 points:11 students.
2 points:7 students.
1 point:9 students.
0 point:23 students.
Unfair, not evaluated:5 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley