KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

KöMaL Füzetek 1: Tálalási javaslatok matematika felvételire

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1212. Prove that (2+3+5) \mid \big(2 \cdot 2^{5^3} + 3^{2^5} - 5^{3^2}\big).

(5 points)

Deadline expired on 10 March 2014.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Mivel a 10 prímtényezős felbontása \(\displaystyle 2\cdot5\), ezért azt kell belátni, hogy az összeg osztható 2-vel és 5-tel.

Az első tag osztható 2-vel, a második és a harmadik tag pedig páratlan (mivel egy páratlan szám összes hatványa is az), így az összegük páros. Tehát az összeg is páros.

A harmadik tag osztható 5-tel. Az első tag: \(\displaystyle 2\cdot2^{5^3}=2\cdot2\cdot2^{5^3-1}=4\cdot2^{124}=4\cdot4^{62}= 4^{63}\). Mivel a 4-hatványok végződései rendre 4, 6, 4, 6, ..., ezért a 4 bármely páratlanadik hatványa 4-re végződik, és ezért 5-tel osztva 4 maradékot ad. A második tag: \(\displaystyle 3^{2^5}=3^{2\cdot2^4}=(3^2)^{2^4}=9^{16}=9^{2\cdot8}=81^8\). Egy \(\displaystyle 10k+1\) alakú szám bármely hatványa 1-re végződik, és így az 5-tel való osztási maradéka is 1. Tehát az első és a második tag összege 5-tel osztva (4+1)-et ad maradékul, vagy osztható 5-tel, és így maga az összeg is 5-tel osztható szám.

Tehát az összeg osztható 2-vel és 5-tel, és így 10-zel is.


Statistics on problem C. 1212.
215 students sent a solution.
5 points:134 students.
4 points:10 students.
3 points:61 students.
2 points:2 students.
1 point:1 student.
Unfair, not evaluated:5 solutions.
Unfair, not evaluated:2 solutions.


  • Problems in Mathematics of KöMaL, February 2014

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley