KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1214. In a class of 30 students, two students are absent. What is the probability that the two of them are next to each other in the alphabetical list of the names? How many students would be in a class where this probability is 0.1?

(5 points)

Deadline expired on 10 March 2014.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Egy \(\displaystyle n\) fős osztályban a névsorban szomszédos két gyereket \(\displaystyle n-1\)-féleképp lehet kiválasztani, hiszen a névsorban előrébb állóra \(\displaystyle n-1\) lehetőség van, a mögötte álló már adott. Összesen pedig \(\displaystyle \binom n2\)-féleképp választhatunk ki két gyereket. Tehát annak a valószínűsége, hogy egy \(\displaystyle n\) fős osztályban a hiányzók szomszédosak a névsorban: \(\displaystyle p_n=\frac{n-1}{\binom n2}=\frac{n-1}{\frac{n(n-1)}{2}}=\frac2n\), ami \(\displaystyle n=30\) esetén \(\displaystyle p_{30}=\frac{2}{30}=\frac{1}{15}\).

Ha ez a valószínűség 0,1, akkor \(\displaystyle p_n=\frac{1}{10}=\frac{2}{20}=\frac2n\), vagyis \(\displaystyle n=20\).


Statistics on problem C. 1214.
199 students sent a solution.
5 points:147 students.
4 points:29 students.
3 points:5 students.
2 points:5 students.
1 point:10 students.
Unfair, not evaluated:1 solution.
Unfair, not evaluated:2 solutions.


  • Problems in Mathematics of KöMaL, February 2014

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley