KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem C. 1214. (February 2014)

C. 1214. In a class of 30 students, two students are absent. What is the probability that the two of them are next to each other in the alphabetical list of the names? How many students would be in a class where this probability is 0.1?

(5 pont)

Deadline expired on 10 March 2014.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Egy \(\displaystyle n\) fős osztályban a névsorban szomszédos két gyereket \(\displaystyle n-1\)-féleképp lehet kiválasztani, hiszen a névsorban előrébb állóra \(\displaystyle n-1\) lehetőség van, a mögötte álló már adott. Összesen pedig \(\displaystyle \binom n2\)-féleképp választhatunk ki két gyereket. Tehát annak a valószínűsége, hogy egy \(\displaystyle n\) fős osztályban a hiányzók szomszédosak a névsorban: \(\displaystyle p_n=\frac{n-1}{\binom n2}=\frac{n-1}{\frac{n(n-1)}{2}}=\frac2n\), ami \(\displaystyle n=30\) esetén \(\displaystyle p_{30}=\frac{2}{30}=\frac{1}{15}\).

Ha ez a valószínűség 0,1, akkor \(\displaystyle p_n=\frac{1}{10}=\frac{2}{20}=\frac2n\), vagyis \(\displaystyle n=20\).


Statistics:

199 students sent a solution.
5 points:147 students.
4 points:29 students.
3 points:5 students.
2 points:5 students.
1 point:10 students.
Unfair, not evaluated:1 solution.
Unfair, not evaluated:2 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley