KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1229. A sphere is cut with the plane whose distance from the centre is 2/3 of the radius. What fraction of the volume is cut off?

(5 points)

This problem is for grade 11 - 12 students only.

Deadline expired on 12 May 2014.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. A gömb sugarát jelölje \(\displaystyle r\), a levágott gömbszelet magasságát pedig \(\displaystyle m\). Az adatokból következik, hogy \(\displaystyle m=r-\frac23r=\frac r3\). A gömb térfogata \(\displaystyle V_g=\frac{4\pi}{3}r^3\). A gömbszelet térfogata:

\(\displaystyle V_{gsz}=\frac{\pi}{3}m^2(3r-m)=\frac{\pi}{3}\left(\frac r3\right)^2\left(3r-\frac r3\right)=\)

\(\displaystyle =\frac{\pi}{3}\cdot\frac{r^2}{9}\cdot\frac{8r}{3}=\frac{4\pi}{3}r^3\cdot\frac{2}{27}=V_g\cdot\frac{2}{27}.\)

Tehát a gömb térfogatának \(\displaystyle \frac{2}{27}\) részét vágja le a sík.


Statistics on problem C. 1229.
32 students sent a solution.
5 points:Bálint Karola, Bekő Mária, Bereczki Zoltán, Berta Dénes, Chourfi Abdel Karim, Demeter Dániel, Denke Dorottya, Erdei Ákos, Fényes Balázs, Fülöp Erik, Hegel Patrik, Hegyi Zoltán, Jójárt Alexandra, Kiss 182 Krisztina, Kranczler Dóra, Krisztián Jonatán, Molnár Dávid, Nagy Dávid, Paulovics Zoltán, Porupsánszki István, Rimóczi Alma, Szabó 157 Dániel, Szabó 524 Tímea, Szűcs Dorina, Szűcs Miklós, Tari Balázs, Telek Máté László, Temesvári Fanni.
4 points:Beregi Ábel.
3 points:3 students.


  • Problems in Mathematics of KöMaL, April 2014

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley