Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?
I want the old design back!!! :-)

Problem C. 1244. (September 2014)

C. 1244. The length of each edge of a cuboid is an integer, the length of the diagonal of the cuboid is 65, and the area of the largest diagonal intersection is 1500. Find the lengths of the edges. (A diagonal intersection is an intersection with a plane through a pair of parallel diagonals of two opposite faces.)

(5 pont)

Deadline expired on October 10, 2014.


Statistics:

70 students sent a solution.
5 points:Ahaan S. Rungta, Bereczki Zoltán, Bottlik Judit, Erdei Ákos, Farkas Dóra, Fehér Balázs, Fényes Balázs, Horváth 016 Gábor, Kósa Szilárd, Krisztián Jonatán, Ladányi Zsuzsanna, Mándoki Sára, Mészáros 01 Viktória, Nánási Dániel Bence, Rejtő Balázs, Sándor Gergely, Sudár Ákos, Szabó 157 Dániel, Szépfalvi Bálint, Szűcs Dorina, Tóth 666 Mátyás.
4 points:Brányi Balázs, Csorba Benjámin, Hermann Erik, Horváth 813 Dominika, Iglódi Ferenc, Pap-Takács Mónika, Porupsánszki István, Sipeki Gergely, Stumphauser Nóra, Sziegl Benedek, Varjas István Péter.
3 points:19 students.
2 points:15 students.
1 point:2 students.
0 point:1 student.
Unfair, not evaluated:1 solution.

Problems in Mathematics of KöMaL, September 2014