KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem C. 1258. (November 2014)

C. 1258. The base radius of a cone is 1, and its height is 2. The base radius is increased by \(\displaystyle x\) and the height is decreased by the same amount. For what value of \(\displaystyle x\) will the volume of the resulting cone a maximum?

(5 pont)

Deadline expired on 10 December 2014.


Statistics:

59 students sent a solution.
5 points:Bereczki Zoltán, Bottlik Judit, Brányi Balázs, Egyházi Anna, Erdei Ákos, Farkas Dóra, Fényes Balázs, Horváth 016 Gábor, Jójárt Alexandra, Kaprinai Ádám, Kasó Ferenc, Kecse Ábel, Kocsis-Savanya Miklós, Kósa Szilárd, Krisztián Jonatán, Lénárt Levente, Mándoki Sára, Orosz Bálint, Porupsánszki István, Sándor Gergely, Sudár Ákos, Szabó 157 Dániel, Szász Róbert, Szauer Marcell, Szücs Patrícia, Tamás 196 Attila, Török Réka , Varjas István Péter, Várkonyi Lídia, Vida Máté Gergely, Viharos Loránd Ottó.
4 points:Csorba Benjámin, Fehér Balázs, Fülöp Erik, Gurdics Dávid, Horváth Bendegúz, Kaló Ádám, Kovács 599 Bálint, Matusek Márton, Nánási Dániel Bence, Nérel Eleonóra, Révy Gábor, Sziegl Benedek, Szűcs Dorina, Telek Máté László, Tóth Bence Tamás.
3 points:5 students.
2 points:4 students.
1 point:2 students.
0 point:1 student.
Unfair, not evaluated:1 solution.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley