Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?
I want the old design back!!! :-)

Problem C. 1266. (January 2015)

C. 1266. Solve the equation \(\displaystyle 5(2n+1)(2n+3)(2n+5) =\overline{ababab}\), where \(\displaystyle n\) denotes a positive integer, \(\displaystyle a\) and \(\displaystyle b\) stand for different digits, and \(\displaystyle \overline{ababab}\) is a six-digit number.

Suggested by L. Számadó, Budapest

(5 pont)

Deadline expired on February 10, 2015.


Statistics:

136 students sent a solution.
5 points:Ardai István Tamás, Bajnok Dénes, Balázs Ákos Miklós, Cseh Noémi, Di Giovanni András, Fekete Balázs Attila, Fetter László, Hegyi Krisztina, Jakus Balázs István, Knoch Júlia, Kocsis Júlia, Kovács 526 Tamás, Lajkó Áron, Mándoki László, Marozsák Tóbiás , Mikulás Hanna, Mikulás Zsófia, Nagy Enikő, Németh 729 Gábor, Pszota Máté, Sallai Krisztina, Schmid Stephanie, Schrettner Jakab, Sebastian Fodor, Souly Alexandra, Szajbély Sámuel, Szalay Bence, Szépkuti Fanni, Tamási Kristóf Áron, Temesvári Bence, Tóth Tamás, Török Ádám, Vajda Alexandra.
4 points:35 students.
3 points:23 students.
2 points:19 students.
1 point:22 students.
0 point:3 students.
Unfair, not evaluated:1 solution.

Problems in Mathematics of KöMaL, January 2015