KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1281. Let \(\displaystyle M\) denote the intersection of the lines of the legs of a trapezium. On a line passing through \(\displaystyle M\) and parallel to the bases, let \(\displaystyle A\) and \(\displaystyle B\) denote the intersections with the extensions of the diagonals. Prove that \(\displaystyle |AM|=|BM|\).

(5 points)

This problem is for grade 1 - 10 students only.

Deadline expired on 10 April 2015.


Statistics on problem C. 1281.
86 students sent a solution.
5 points:57 students.
4 points:6 students.
3 points:5 students.
2 points:8 students.
1 point:5 students.
0 point:4 students.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, March 2015

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley