KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1323. Let \(\displaystyle T\) denote the intersection of side \(\displaystyle BC\) with the angle bisector drawn from vertex \(\displaystyle A\) of a right-angled triangle. Let \(\displaystyle F\) denote the midpoint of side \(\displaystyle BC\), and let \(\displaystyle M\) be the intersection of the perpendicular bisector drawn at \(\displaystyle F\) with another side. Given that the quadrilateral \(\displaystyle ATFM\) is a kite, determine the angles of the triangle. (\(\displaystyle A\) may denote any vertex of the triangle.)

(5 points)

This problem is for grade 1 - 10 students only.

Deadline expired on 11 January 2016.


Statistics on problem C. 1323.
129 students sent a solution.
5 points:Dávid Levente, Édes Lili, Fekete Balázs Attila, Fraknói Ádám, Jánosdeák Márk, Marozsák Tóbiás , Páhoki Tamás, Weisz Máté.
4 points:Balogh 999 Árpád Mátyás, Fazekas 15 Levente, Malák Péter, Máth Benedek, Pinke Andrea, Szilágyi Éva, Tóth 111 Máté , Tubak Dániel, Veres Bálint.
3 points:70 students.
2 points:12 students.
1 point:23 students.
0 point:6 students.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, December 2015

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley