Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?
I want the old design back!!! :-)

Problem C. 1330. (January 2016)

C. 1330. How many different rectangular mosaics can be made out of four different photos of \(\displaystyle 2:3\) aspect ratio? (The photos may be enlarged, but may not be rotated. Two mosaics are considered identical if they are obtained from each other by enlargement.)

(5 pont)

Deadline expired on February 10, 2016.


Statistics:

92 students sent a solution.
5 points:Beke-Szabó Csenge, Édes Lili, Fajszi Bulcsú, Fekete Balázs Attila, Fraknói Ádám, Garamvölgyi István Attila, Jalsovszky Janka, János Zsuzsa Anna, Jánosdeák Márk, Kálóczi Kornél, Kassai Levente, Kovács-Deák Zsombor, Markó Anna Erzsébet, Marozsák Tóbiás , Maucha Levente, Mikulás Zsófia, Molnár 410 István, Nagy Marcell, Nagy Nándor, Németh Csilla Márta, Pinke Andrea, Pintér 345 Balázs, Póta Balázs, Sebestyén Pál Botond, Szakali Benedek, Szalay Gergő, Szécsi Adél Lilla, Szilágyi Éva, Szűcs 865 Eszter, Thuróczy Mylan, Tóth 430 Róbert, Weisz Máté, Zsombó István.
4 points:18 students.
3 points:15 students.
2 points:13 students.
1 point:8 students.
0 point:5 students.

Problems in Mathematics of KöMaL, January 2016