KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem C. 1340. (February 2016)

C. 1340. Points \(\displaystyle P\), \(\displaystyle Q\), \(\displaystyle R\), \(\displaystyle S\) lie on sides \(\displaystyle AB\), \(\displaystyle BC\), \(\displaystyle CD\), \(\displaystyle DA\) of a rectangle \(\displaystyle ABCD\), respectively. Line segments \(\displaystyle PR\) and \(\displaystyle QS\) are perpendicular. Prove that the midpoints of line segments \(\displaystyle SP\), \(\displaystyle PQ\), \(\displaystyle QR\) and \(\displaystyle RS\) form a rectangle, which is similar to \(\displaystyle ABCD\).

(5 pont)

Deadline expired on March 10, 2016.


Statistics:

124 students sent a solution.
5 points:88 students.
4 points:8 students.
3 points:20 students.
2 points:7 students.
0 point:1 student.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley