KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1351. Trapezium \(\displaystyle ABCD\) has an inscribed circle that touches the sides \(\displaystyle AB\), \(\displaystyle BC\), \(\displaystyle CD\) and \(\displaystyle DA\) at points \(\displaystyle E\), \(\displaystyle F\), \(\displaystyle G\) and \(\displaystyle H\), respectively. The interior angle at vertex \(\displaystyle B\) is \(\displaystyle 60^\circ\). Let \(\displaystyle I\) denote the intersection of lines \(\displaystyle AD\) and \(\displaystyle FG\), and let \(\displaystyle K\) denote the midpoint of \(\displaystyle FH\). Prove that if \(\displaystyle HE\) is parallel to \(\displaystyle BC\) then \(\displaystyle IK\) is also parallel to them.

(5 points)

This problem is for grade 1 - 10 students only.

Deadline expired on 10 May 2016.


Statistics on problem C. 1351.
74 students sent a solution.
5 points:59 students.
4 points:10 students.
3 points:2 students.
2 points:1 student.
1 point:1 student.
0 point:1 student.


  • Problems in Mathematics of KöMaL, April 2016

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley