KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1367. The convex octagon \(\displaystyle ABCDEFGH\) has a centre of symmetry. Prove that the sum of the areas of the quadrilaterals \(\displaystyle ABEF\), \(\displaystyle BCFG\), \(\displaystyle CDGH\) and \(\displaystyle DEHA\) is twice the area of the octagon.

(5 points)

Deadline expired on 10 October 2016.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Mivel a nyolcszög középpontosan szimmetrikus, az \(\displaystyle ABEF\) négyszög paralelogramma, így a \(\displaystyle BF\) átló felezi a területét. Az \(\displaystyle ABF\) háromszög területét pedig az \(\displaystyle AO\) súlyvonala felezi.

Ezért \(\displaystyle T_{ABO}=\frac{T_{ABEF}}{4}\). A szimmetria miatt \(\displaystyle T_{ABO}=T_{EFO}\), így \(\displaystyle T_{ABO}+T_{EFO}=\frac{T_{ABEF}}{2}\), vagyis \(\displaystyle T_{ABEF}=2(T_{ABO}+T_{EFO})\).

Hasonló állításokat láthatunk be a \(\displaystyle BCFG\), \(\displaystyle CDGH\) és \(\displaystyle DEHA \) paralelogrammákra.

A nyolcszög területe az \(\displaystyle ABO\), \(\displaystyle BCO\),…, \(\displaystyle HAO\) részháromszögek területének összege. A négy paralelogramma területének összege pedig ezen háromszögek területösszegének kétszerese.

Tehát \(\displaystyle T_{ABEF}+T_{BCFG}+T_{CDGH}+T_{DEHA}=2\cdot T_{ABCDEFGH}\).

Megjegyzés. Nagyon sokan rosszul értelmezték a feladatot és szabályos (esetleg tengelyesen szimmetrikus) nyolcszögre oldották meg a feladatot. Ők 0 pontot kaptak.


Statistics on problem C. 1367.
229 students sent a solution.
5 points:115 students.
4 points:27 students.
3 points:5 students.
2 points:6 students.
1 point:5 students.
0 point:69 students.
Unfair, not evaluated:2 solutions.


  • Problems in Mathematics of KöMaL, September 2016

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley