KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem C. 1378. (November 2016)

C. 1378. One of three real numbers is 2 more than the average of the three numbers. How much greater is that number than the average of the other two?

(5 pont)

Deadline expired on 12 December 2016.


Sorry, the solution is available only in Hungarian. Google translation

1. megoldás. Legyen \(\displaystyle x\) a három szám átlaga. Ekkor az egyik szám \(\displaystyle x+2\). A három szám összege \(\displaystyle 3x\), tehát a másik két szám összege \(\displaystyle 3x-(x+2)=2x-2\). Ha az összegük \(\displaystyle 2x-2\), akkor az átlaguk \(\displaystyle x-1\).

Mivel \(\displaystyle (x+2)-(x-1)=3\), ezért 3-mal nagyobb a szám a másik kettő átlagánál.

Baski Bence (Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium, 7. évf.)

2. megoldás. Legyen a három valós szám \(\displaystyle a\), \(\displaystyle b\) és \(\displaystyle c\). Legyen a \(\displaystyle c\) szám az, ami 2-vel meghaladja a három szám átlagát:

\(\displaystyle \frac{a+b+c}{3}+2=c.\)

Vegyünk el mindkét oldalból \(\displaystyle \frac c3\)-at:

\(\displaystyle \frac{a+b}{3}+2=\frac{2c}{3}.\)

Szorozzuk mindkét oldalt \(\displaystyle \frac32\)-del:

\(\displaystyle \frac{a+b}{2}+3=c.\)

A \(\displaystyle c\) szám 3-mal nagyobb a másik két szám átlagánál.


Statistics:

251 students sent a solution.
5 points:216 students.
4 points:3 students.
3 points:3 students.
1 point:3 students.
0 point:26 students.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley