KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1394. How many positive integers are there whose prime factorization contains only the two smallest primes, and whose third power has eight times as many positive divisors as the number has?

(Matlap, Kolozsvár)

(5 points)

Deadline expired on 10 February 2017.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. A keresett számok \(\displaystyle 2^p\cdot3^q\) alakúak, ahol \(\displaystyle p,\,q\in \Bbb N^+\).

Az ilyen alakú számok pozitív osztóinak száma: \(\displaystyle (p+1)(q+1)\).

A számok harmadik hatványa \(\displaystyle 2^3p\cdot 3^3q\) alakú.

Ezek pozitív osztóinak száma: \(\displaystyle (3p+1)(3q+1)\).

A feltétel alapján \(\displaystyle 8(p+1)(q+1)=(3p+1)(3q+1)\).

Az egyenletet rendezve:

\(\displaystyle 8pq+8p+8q+8=9pq+3p+3q+1,\)

\(\displaystyle 0=pq-5p-5q-7=(p-5)(q-5)-32.\)

Tehát a \(\displaystyle (p-5)(q-5)=32\) egyenletet kaptuk.

32 lehetséges osztóit figyelembe véve a következő megoldások adódnak:

\(\displaystyle (p-5,q-5)\in\{(1,32),(2,16),(4,8),(8,4),(16,2),(32,1)\},\)

amiből

\(\displaystyle (p,q)\in\{(6,37),(7,21),(9,13),(13,9),(21,7),(37,6)\}.\)

Tehát 6 ilyen szám van.


Statistics on problem C. 1394.
194 students sent a solution.
5 points:149 students.
4 points:6 students.
3 points:7 students.
2 points:20 students.
1 point:7 students.
0 point:4 students.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, January 2017

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley